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Motivation for Dust Studies 
Gets in the way of everything

Vital to our understanding of the universe

dust a primary respository of the ISM

interpretation of Cosmology results, etc.

chemical evolution of stars, planets, life



Multiwavelength studies of dust

X-rays : unique probe of solid state nature of 
molecule;   sensitive to ALL atoms in both gas 
and solid phase 

IR : can directly probe vibrational modes, but limited 
to PAHs, graphites and certain silicates (~2.5-25 µm 
region). Cannot easily speciate the grain composition

UV : dust inferred from the depletion factor (amount 
expected : measured)

Optical : dust inferred from redding/extinction, 
polarization

Radio : probe gas phase;  21cm, CO, etc.



Reviews, etc from some of the experts

Dust and Astrophysics :

Bruce Draine : Annual Reviews of Astronomy & Astrophysics & 
references therein: e.g. Li & Greenberg 2003

Endrik Krügel :  `The Physics of Interstellar Dust’

Lyman Spitzer : `Physical Processes in the ISM’

D C B Whittet : `Dust in the Galactic Environment’

Also, ApJ papers by Woo et al. 1995, 97; Forrey et al. 1998

XAFS Theory & Practice

Koningsberger & Prins (1988)

Kruegel (2003)

B. Ravel & M. Newville

Rehr & Albers (2000)

J. Stöhr (1996)



interstellar grain 
composition

solid state astrophysics  ?!

Detections of X-ray Absorption Fine Structure

XAFS XANES: 
valence of absorber

density of states of abs.

EXAFS: 
local atomic structure

GRS 1915+105 : Lee et al. 2002

also see Ueda et al. 2005



The theory behind measuring 
X-ray Absorption Fine Structure (XAFS) 

to determine molecular composition

The photoelectric effect : X-ray photon absorbed 
by an electron in a tightly bound quantum core 
level (e.g. 1s or 2p)



Bound-free case for isolated atoms
X-ray absorption through the photoelectric process

Figures from  “XAFS” : © 2002 Matt Newville
µ(E) = µ0(E)

       Isolated Atom: Bound free process --> edge step 
promotion of e- to continuum results in sharp rise in the probability for absorption 



The theory behind measuring 
X-ray Absorption Fine Structure (XAFS) 

to determine molecular composition

The photoelectric effect : X-ray photon absorbed 
by an electron in a tightly bound quantum core 
level (e.g. 1s or 2p)

Isolated Atom: Bound free process --> edge step 

Isolated Atom : Bound bound process --> inner 
shell resonance absorption lines (e.g. MCG-6-30-15: Oxygen V, 
VI KLL : Lee et al. 2001; IRAS 13349 : 2p-3d M-shell Fe  : Sako et al. 2000,  NGC 
3783 -- Kaspi et al. 2002, Netzer et al. 2003 & references therein;                 
atomic calcs: e.g.   Pradhan;  Kallman;  Behar  ...)

Molecule : bound-bound process --> XAFS



Heuristic Picture of EXAFS

(2) Single Scattering Approximation : 
The photoelectron propagates as a 
spherical wave & interacts with 
neighboring atoms -> backscattered wave 
affects abs. properties of absorbing atom

Introduction to EXAFS Analysis Using Theoretical Standard, ©2000-2001 Bruce Ravel

(1) Deep core electron is excited 
into a state above Fermi energy

Absorbing 
Atom

Scattering 
Atom

Scattered
Photo-electron

→

→Outgoing
photo-electron

←



XAFS Theory 
Bound-bound case for molecules

Figures from  “XAFS” : © 2002 Matt Newville

µ(E) = µ0(E)[1 + χ(E)]

The amplitude of the back-scattered photo-electron at the absorbing atom
will vary with energy --> oscillations in μ(E) --> XAFS



The theory behind measuring 
X-ray Absorption Fine Structure (XAFS) 

to determine molecular composition

Fermi’s Golden Rule :

µ(E) = µ0(E)[1 + χ(E)] ∝ | < i |H | f > |2
↓

initial state : an X-ray, a core electron, no photo-election

final state : no X-ray, a core hole, a photo-election
↑

The EXAFS equation : represents interaction of forward scattering & backscattering photoelectron

photo-electron scattering properties 
of neighboring atoms

depends ONLY on 
absorbing atom↓ change in photo-electron final state

due to back-scattering from neigboring atom↓

Single Scattering Approximation

Fine-Structure Term : 
χ(E) =

µ(E) − µ0(E)

∆µ0(E)
∝< i |H |∆f > H: interaction term - represents changing 

between 2 energy, momentum states



The practice behind measuring 
X-ray Absorption Fine Structure (XAFS) 

to determine molecular composition

χ(E) =
µ(E) − µ0(E)

∆µ0(E)
∝< i |H |∆f >

Isolate fine structure term : 

χ(E) −→ χ(k)

interference effect : depends on wave nature of photoelectron
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Scattering Paths



Scattering Paths

χ(k) =
∑

i

S2
0Fi(k)

2kR2
i

e−2σ2

i
k2

e−2Ri/λ(k) sin[2kRi + Φi(k)]



ISM Grain Candidates

UV, IR, & meteorite studies indicate compositions :

ice : H2O 

graphite : C

polyaromatic hydrocarbons : PAHs

silicates : SiO2, FeSiO3, FeSiO4, MgSiO3, Mg2SiO4

iron species : Fe, FeO, Fe2O3, Fe3O4



K-edge Absorption Cross Sections
for IRON compounds
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Lee & Ravel, 2005 ApJ. 622, 970 
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For us Astronomers ...
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Identifying Compounds using
XAFS theory and synchrotron analysis techniques

Oxygen neighbor

Iron neighbor←
←

ASTRO E2 XRS←
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wÜstite

pyriteiron carbidemagnetite

metallic iron hematite

Lee & Ravel, 2005 ApJ. 622, 970



TextTextTextText

The limiting effects of 
spectral resolution

Data from BNL NSLS & ANL APS
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At moderate noise level

Fe Metal :
R = 20 eV maybe still OK

Magnetite :
R = 10 eV a minimum

Lee & Ravel 2005 ApJ



TextTextTextText

The limiting effects
 of noise

Data from BNL NSLS X11A beamline

Lee & Ravel 2005 ApJ

At R~10 eV

Fe Metal :
can tolerate relatively high noise

Magnetite :
cannot even tolerate 5% noise



 Constellation-X and ISM Grain Physics
 Need AREA + Spectral R >= 2500-3000 

Gratings
0.25 - 6 keV FWHM

Calorimeter
6-10 keV FWHM

E/ΔE=300
Baseline
Con-X

E/ΔE=1000
Chandra

Ideal 
E/ΔE

E/ΔE~923
Suzaku

E/ΔE= 1500
Baseline 
Con-X

Ideal
E/ΔE

Gas vs. 
dust

Difficult 
without 
context

YES 
(isolate WA 
though)

YES YES

Different
dust

NO WAY ! 
MAYBE, 

with good 
statistics 

3000 
silicates from 
Fe/oxides but
Fe304= Fe203 

OK with 
good 

statistics

silicates 
from iron / 

oxides
3000 

Discern 
oxides

NO WAY ! NO 5000 NO
very hard 

to not 
possible

5000


